Oscillation of Impulsive Hyperbolic Differential Equations with Distributed Delay

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Oscillation of the systems of impulsive hyperbolic partial differential equations

The systems of impulsive hyperbolic partial differential equations with Robin boundary value condition are investigated. Several new sufficient conditions of oscillation for such systems are established by employing impulsive differential inequalities and integration.

متن کامل

Oscillation Properties of Higher Order Impulsive Delay Differential Equations

This paper studies the oscillation properties of higher order impulsive delay differential equations, and some sufficient conditions for all bounded solutions of this kind of higher order impulsive delay differential equations to be nonoscillatory are obtained by using a comparison theorem with corresponding nonimpulsive differential equations. AMS subject classification: 34C10, 34C15.

متن کامل

Nonlinear oscillation of certain third-order neutral differential equation with distributed delay

The authors obtain necessary and sufficient conditions for the existence of oscillatory solutions with a specified asymptotic behavior of solutions to a nonlinear neutral differential equation with distributed delay of third order. We give new theorems which ensure that every solution to be either oscillatory or converges to zero asymptotically. Examples dwelling upon the importance of applicab...

متن کامل

Oscillation Criteria of Third-Order Nonlinear Impulsive Differential Equations with Delay

and Applied Analysis 3 we get that x󸀠(t) > 0 for any t ∈ (τ k , τ k+1 ], k = j + 1, j + 2, . . .. So the following impulsive differential inequalities hold: x 󸀠󸀠 (t) ≤ −α ∏ τj+1<τk τ j+1 , t ̸ = τ k , x 󸀠 (τ + k ) ≤ b k x (τ k ) , k = j + 1, j + 2, . . . . (13) According to Lemma 1, we get x 󸀠 (t) ≤ x 󸀠 (τ + j+1 ) ∏ τj+1<τk<t b k − α∫ t τj+1 ∏ s<τk<t b k ∏ τj+1<τk<s c k ds = ∏ τj+1<τ...

متن کامل

Oscillation of nonlinear impulsive differential equations with piecewise constant arguments

denotes the greatest integer function, and x−1, x0 are given real numbers. Since 1980’s differential equations with piecewise constant arguments have attracted great deal of attention of researchers in mathematical and some of the others fields in science. Piecewise constant systems exist in a widely expanded areas such as biomedicine, chemistry, mechanical engineering, physics, etc. These kind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ScieXplore: International Journal of Research in Science

سال: 2017

ISSN: 2350-0999,2349-8919

DOI: 10.15613/sijrs/2017/v4i1/172389